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Abstract

Our goal is to fit the multiple instances (or structures) of
a generic model existing in data. Here we propose a novel
model selection scheme to estimate the number of genuine
structures present. In contrast to conventional model se-
lection approaches, our method is driven by kernel-based
learning. The input data is first clustered based on their
potential to have emerged from the same structure. How-
ever the number of clusters is deliberately overestimated to
obtain a set of initial model fits onto the data. We then re-
solve the oversegmentation via a series of kernel optimisa-
tion conducted through multiple kernel learning, and the
concept of kernel-target alignment is used as a model se-
lection criterion. Experiments on synthetic and real data
show that our method outperforms previous model selec-
tion schemes. We also focus on the application of multi-
body motion segmentation. In particular we demonstrate
success on estimating the number of motions on sequences
with more than 3 unique motions.

1. Introduction

Many computer vision problems involve data with mul-
tiple structures. A “structure” is defined as an instance of
a generic model in the data [18]. For example in homog-
raphy detection a scene often contains multiple planar sur-
faces, each giving rise to a set of multi-view point corre-
spondences that can be related by a specific homography.
Most applications would be interested to recover all of the
genuine structures present and to fit (i.e. estimate parameter
values for) the generic model onto these structures.

Many recent efforts on multi-structure recovery are di-
rected towards Multi-body Structure-and-Motion (MSaM)
problems. A particularly active area is multi-body motion
segmentation, i.e. given multi-view point correspondences
or trajectories, recover the multiple distinct motions con-
tained in the data. However many such works (including
very recent ones [8, 14, 7, 2]) solve the segmentation part of
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the problem only, i.e. separate the points based on the mo-
tion they belong to given the number of motions is known
a priori. The problem of estimating the number of motions
has received less attention, although in practical settings the
number of motions is usually unknown beforehand.

Indeed, it has been observed [5] that estimating the num-
ber of motions is actually more challenging than segment-
ing the motions. Straightforward solutions like counting the
number of zeros in matrices computed from motion data [5]
almost always fail in practice because of noise in the data.
One has to resort to some form of model selection, where
a “model” here implies a specific number of motions and
their fit onto the data. The idea is to strike a balance be-
tween the goodness of fit of a model and the model com-
plexity (which in the multi-structure case is proportional to
the number of structures). Previous work on model selec-
tion in motion segmentation can roughly be categorised into
three groups: Rank detection methods [13], combinatorial
methods [15, 19] and cluster detection methods [11, 4, 3].

Under the first group, Kanatani and Matsunaga [13] pro-
pose to detect the effective rank of the observation (trajec-
tory) matrix using the Geometric AIC and Geometric MDL
model selection criteria. Under the affine camera model
where each motion occupies a distinct subspace [5], the
rank of the observation matrix is proportional to the number
of motions. The method performs well on synthetic motion
sequences. However recent tests [3] on the Hopkins 155
dataset [21] show that it is not very accurate in practice.
Moreover it is prone to breakdown [3] due to a lack of an
explicit mechanism to deal with outliers in the data.

The second group of methods [15, 19] advocate a
hypothesise-then-select approach. A set of candidate mo-
tions are first generated from the data by random sampling
in the manner of RANSAC [9]. The likeliest subset of mo-
tions are then selected via combinatorial optimisation with
the GRIC [20] model selection cost as the objective func-
tion. One problem is that the global minimum can only be
found through exhaustive search [15]. This is usually in-
tractable since one typically generates a large number of hy-
pothesis motions. In [15] approximate solutions are sought
using Taboo search which is a set of heuristics to greedily
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(a) The “three-cars” sequence from Hopkins 155
with 3 unique motions, each from a distinct ob-
ject. Initial cluster detection reveals 6 motions.

(b) Actual optimised kernels for pairs of mo-
tions. Observe that kernels for dissimilar mo-
tions (second row) are more block diagonal.
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(c) Model selection based on kernel optimisation.
The maximum (minimum) average kernel-target
alignment (disparity) is achieved at 3 motions.

Figure 1. Applying the proposed model selection scheme on motion data. (a) The input data is first oversegmented using the approach
of [4, 3]. (b) A kernel is then optimised for each pair of clusters, where the target kernel is an ideal block diagonal matrix. (c) The alignment
between the learnt and the target kernel is used to drive a structure merging model selection scheme, where a pair of structures are more
likely to be merged if their kernel alignment is low. The average alignment of a model serves as an accurate model selection criterion.

move towards the local minimum by adding one motion at
every step. A more recent work [19] proposes a branch-and-
bound strategy to prune the search space.

The third group of methods [11, 4, 3] attempt to directly
detect the number of clusters in the data. In [11], Dirich-
let Process Mixture Model (DPMM) learning is used to
simultaneously infer the number of clusters and the clus-
ter membership of each point. However the authors pro-
pose to repeat the clustering several times and to validate
the “fitness” of each clustering. This suggests that the re-
sults are likely to be ambiguous and that model selection
is still required. More recently [4, 3] introduce a novel
Mercer kernel to cluster data based on the potential of two
points to have emerged from the same structure. Recog-
nizing that clean clusters are unattainable in real data they
deliberately oversegment the data. Extraneous clusters are
then removed with a sequential structure-removal operation
which is essentially a model selection step. However their
merging criterion was developed based on simple 2D geo-
metrical structures and might not be optimal for more com-
plex structures. Nonetheless evaluations [3] on the Hopkins
155 dataset show that this approach is the most accurate in
model selection for affine camera motion segmentation.

In this paper we propose an unconventional but highly
effective model selection scheme based on kernel learn-
ing. Like [4, 3] we first oversegment the data to obtain a
candidate set of structures and attempt to merge the struc-
tures. To this end we treat each pair of structures as sam-
ples for a binary classification problem. A kernel is then
optimised via Multiple Kernel Learning (MKL) [1, 17] to
separate the classes. The key insight is that if two structures
are indeed separate instances of the generic model the opti-
mised kernel will have a high alignment [6] (or as defined
later in Sec. 3) with the target kernel. On the other hand

a low alignment suggests that the two structures should be
merged. We propose a structure merging operation that is
driven by kernel-target alignment, and show that the max-
imum overall kernel-target alignment is achieved when the
correct number of structures are fitted onto the data. Fig. 1
illustrates the idea. Experiments (see Sec. 4) show that our
approach outperforms previous methods. In particular we
show superior results over [13, 4, 3] in model selection for
motion segmentation using the Hopkins 155 dataset [21].
We also demonstrate success on model selection for se-
quences with more than 3 unique motions.

The rest of the paper is organised as follows: In Sec. 2 we
first examine the cluster detection method of [4, 3] which
we apply to oversegment the data. In Sec. 3 we describe the
proposed model selection scheme. We present experimental
results in Sec. 4 and draw conclusions in Sec. 5.

2. Cluster Detection
In this section we describe the kernel-based multi-

structure robust fitting approach of [4, 3]. In particular we
examine the Mercer kernel proposed in [4, 3] which is used
to cluster data based on the potential of two points to have
emerged from the same structure. We also show how it can
be used to obtain an initial set of model fits onto the data.

2.1. The Ordered Residual Kernel

Let the model to be fitted be defined by p parameters,
e.g. p = 2 for lines, p = 3 for circles. Given input data
X = {xi}i=1,...,D of D points we first randomly sample
a set of M model hypotheses {θj}j=1,...,M , where each
hypothesis θj is fitted from a minimal subset of p points.
For each data point xi, we compute its absolute residual set
r = {r1, . . . , rM} as measured to the M hypotheses, e.g.
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for lines rj is the orthogonal distance of xi to the line θj .
We sort the elements in r to obtain the sorted residual set

r̃ = {rλ1 , . . . , rλM
}, where the permutation {λ1, . . . , λM}

is obtained such that rλ1 ≤ · · · ≤ rλM
. The sorted hypoth-

esis set of point xi is then defined as

λi = {λ1, . . . , λM}. (1)

Intuitively λi depicts the preference of xi to theM hypothe-
ses. As proposed in [4] the Ordered Residual Kernel (ORK)
between two data points xi and xj is defined as

kr̃(xi, xj) =
1
T

M/h∑
t=1

1
t
kt∩(λi,λj), (2)

where T =
∑M/h
t=1 1/t is a normalisation constant. Compo-

nent kt∩ is the Difference of Intersection Kernel (DOIK)

kt∩(λi,λj) =
1
h

(|λ1:αt
i ∩λ1:αt

j |−|λ1:αt−1
i ∩λ

1:αt−1
j |) (3)

where αt = t·h and αt−1 = (t−1)h. Symbol λa:bi indicates
the set formed by the a-th to the b-th elements of λi. Note
that h is a stepsize that is determined based on M [4].

Given two input points, kr̃ evaluates the rate of increase
of the hypotheses they mutually prefer as a fictitious inlier
threshold rises (in steps of h) from 0 to∞ [4]. Thus given
two points from the same structure, kr̃ will return a high
value, while a low value is obtained when the points are
from different structures. Since kr̃ is also provably a valid
Mercer kernel [16] (see [4] for proofs) it induces a mapping
which maps the input data to a high dimensional feature
space whereby the inner product is simply the kernel kr̃.
Therefore by construction, kr̃ maps points to clusters in the
feature space, where each cluster corresponds to a structure
in the data. For more details of ORK refer to [4, 3].

2.2. How Many Clusters?

To detect the number of clusters, [4, 3] propose to apply
spectral clustering (e.g. see [10]). The data is first pro-
jected onto their principal components in the ORK-induced
feature space. The affinity matrix for spectral clustering
is constructed from the reduced dimension data, and the
eigenspectrum of the Laplacian matrix is examined for the
number of zeros (where each zero indicates one cluster). A
separate k-means step (with k set to the number of detected
clusters) is then used to cluster the reduced dimension data.

As an example we apply ORK and spectral clustering
on the “three-cars” sequence in Fig. 1 with M = 400 and
h = 50. Since each motion under the affine camera model
occupies a 4D subspace (assuming independent and non-
degenerate motions), we sample 4D subspaces from the ob-
servation matrix. Fig. 2 shows the resulting affinity matrix
and the first-few eigenvalues of the Laplacian matrix.

(a) Affinity matrix.
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(b) First-9 eigenvalues of Laplacian.

Figure 2. Detecting the number of clusters (where each cluster is a
unique motion) for the “three-cars” sequence.

The results in Fig. 2 illustrate typical difficulties in clus-
ter detection for real data. Making an unambiguous con-
clusion that three clusters exist from the eigenspectrum of
the Laplacian matrix is non-trivial. Firstly due to limits on
computational precision the first-two seemingly zero eigen-
values are not exactly zero. This implies thresholding is
required (c.f. the zero thresholding method in [5]). How-
ever, setting a threshold which is too low (e.g. ≈ 1.0e−3)
causes the third cluster to be ignored— due to noise the third
eigenvalue is significantly larger than the first two. One has
to apply a much higher threshold (e.g. ≈ 20) to include
all genuine clusters. Almost certainly this ad-hoc threshold
does not generalise well to other sequences where a differ-
ent eigenspectrum of the Laplacian matrix may exist.

In view of the difficulty of cluster detection, we propose
to overcluster the data and attempt to merge the clusters
later via a model selection scheme. We use a consistent
thresholding rule across all data based on normalised cu-
mulative eigenvalues. Let W, D and L respectively be the
affinity, degree and Laplacian matrix of the data, where

Dp,p =
∑
i

Wi,p and Dp,q = 0 ∀ p 6= q (4)

and L = D −W. Let the eigendecomposition of L be
UΣVT . The normalised cumulative eigenvalue vector is
defined as σ̄ = [ σ̄1 σ̄2 . . . ], where each value σ̄p is

σ̄p =
p∑
i=1

Σi,i/
∑
j

Σj,j . (5)

Using a fixed threshold (e.g. 0.1 for 10% energy) we count
the number of values in σ̄ which are below this threshold as
the number of clusters. Fig. 1(a) illustrates the result on the
“three-cars” sequence, where 6 clusters are detected.

3. Model Selection via Kernel Optimisation
Statistical model selection theory and its geometric ex-

tensions [12, 20] suggest to balance goodness-of-fit and
model complexity. In the case of multi-structure fitting we
wish to determine the correct number of instances of a fixed

3588



geometric model existing in the data. Hence, a “model”
here implies a specific number of instances of the geomet-
ric model and their fit onto the data. The complexity of a
model is thus proportional to the number of structures. Hav-
ing a small number of structures ensures lower complexity
but risks obtaining a poor fit (i.e. high fitting error) onto
the data. Previous works on model selection (see Sec. 1) at-
tempt to minimise a cost function which includes two com-
ponents: fitting error and model complexity measure.

Here we propose a novel structure merging scheme
driven by kernel optimisation for model selection. A pair of
structures are treated as different groups for which a Sup-
port Vector Machine (SVM) classifier is to be trained. A
kernel matrix is then optimised for the SVM using Multiple
Kernel Learning (MKL). The measure of success of opti-
mising this kernel serves as the model selection criterion.

3.1. Multiple Kernel Learning

Let S = {(x1, y1), . . . , (xN , yN )} be a set of training
data for binary classification, with feature vectors xi and
target labels yi ∈ {+1,−1}. An important ingredient in
SVM is to specify a kernel function k(·, ·|θ) that is suit-
able for the classification problem at hand. Symbol θ indi-
cates the type (i.e. parametric form) of the kernel as well
as its parameter values, e.g. Gaussian kernel with a specific
bandwidth value, polynomial kernel with a specific degree.
Training an SVM produces a classifier of the form

f(x) = sign

(
N∑
i=1

αiyik(x, xi|θ) + b

)
(6)

where b is a constant bias, and the αi’s are coefficients de-
termined from SVM training. Vectors xi for which the co-
efficient αi is nonzero are called “support vectors”. Un-
surprisingly choosing the correct kernel (and its parameter
values) plays a crucial role in the performance of SVMs.

Realising the difficulty in crafting appropriate kernels or
setting parameter values, the idea of MKL is proposed (e.g.
see [1, 17]). Instead of a pre-determined kernel, MKL re-
quires a set of base kernels {k(·, ·|θk)}k=1,...,K . The goal
is to produce a convex combination of the base kernels to
obtain a strong overall kernel

k̂(·, ·) =
K∑
k=1

βkk(·, ·|θk). (7)

This is then plugged into the SVM classifier

f(x) = sign

(
N∑
i=1

αiyi

K∑
k=1

βkk(x, xi|θk) + b

)
. (8)

Efficient algorithms have been proposed [1, 17] to simul-
taneously optimise the coefficients αi and βk. Intuitively

base kernels with higher βk values are deemed more useful
for the problem at hand. If the base kernels are of the same
type but of different parameter values, MKL is effectively
optimising the best parameters for this type of kernel.

3.2. Base Kernels for Model Selection

We proceed from having segmented the input dataX into
P clusters {Sp}p=1...P , where Sp ∩ Sq = ∅ for all p 6= q

and X =
⋃P
p=1 Sp. Our goal is to determine if a pair of

clusters contain points that emerged from the same instance
of a generic model in the data. Our idea is to treat this as
a binary classification problem. Given two distinct clusters
Sp and Sq we aggregate their points into {x1, . . . , xN} =
Sp ∪ Sq . We give each xi a binary class label yi, where

yi =
{

+1 if xi ∈ Sp
−1 if xi ∈ Sq

, (9)

and try to optimise a kernel function for an SVM classifier.
The level of difficulty in producing such a kernel function
then serves as a measure of how similar the two clusters are.

We apply MKL to optimise the kernel function. The trick
is to choose a set of base kernels that is suitable for the
problem. To this end we observe that the ORK in Eq. (2) is
basically a smoothed version of the intersection kernel [16]

k∩(xi, xj |h) =
1
h
|λ1:h
i ∪ λ1:h

j |, 1 ≤ h ≤M. (10)

The smoothing compensates for the uncertainty in select-
ing window size h which is a kernel parameter. The inter-
section kernel counts the number of hypotheses xi and xj
mutually prefer among their h “most preferred” hypotheses
λ1:h
i and λ1:h

j . If both points are from the same structure
then k∩(xi, xj |h) will be high (and vice versa). Parameter
h effectively controls the discriminative power of the inter-
section kernel since the size of h affects the probability of
sharing preferred hypotheses by two points.

Figs. 3(a) and 3(c) illustrate a few kernel matrices com-
puted using the intersection kernel on clusters 3 and 5 (same
motions) and clusters 4 and 5 (different motions) from the
segmented “three-cars” sequence in Fig. 1(a). Observe that
when h is low, the kernel is highly discriminative and both
intra- and inter-class responses are attenuated. When h is
high the kernel loses its discriminative power and most en-
tries contain a high value. Also the block diagonal structure
is more apparent in kernel matrices from clusters with dif-
ferent motions thus indicating they are easier to separate.

We use intersection kernels of different window sizes as
the base kernels. Given a pair of clusters Sp and Sq and
the binary class labels of the points they contain, we apply
MKL to seek the optimal combination kernel

k̂p,q(·, ·) =
M∑
h=0

βhk∩(·, ·|h) (11)
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(a) Kernel matrices with h = 10, 50, 150, 200, 250, 300 and 350 for clusters 3 and 5 (same motions). (b) Target and optimised ker-
nel for clusters 3 and 5.

(c) Kernel matrices with h = 10, 50, 150, 200, 250, 300 and 350 for clusters 4 and 5 (different motions). (d) Target and optimised ker-
nel for clusters 4 and 5.

Figure 3. Optimising SVM kernels for the “three-cars” sequence in Fig. 1. (a) and (c): Kernel matrices with different h values for the
intersection kernel, i.e. Eq. (10). The number of hypotheses M is set to 400. (b) and (d): Target and learnt kernel from MKL.

to separate the points. The idea is that if Sp and Sq are
indeed from different structures many of the base kernels
are useful for classification, thus it would be relatively easy
to optimise a highly discriminative k̂p,q .

3.3. Model Selection Algorithm

The level of difficulty in optimising k̂p,q serves as a crite-
rion for structure merging in our model selection algorithm.
Define the target kernel for Sp and Sq as

ktarp,q (xi, xj) = 0.5|yi + yj |, (12)

i.e. the perfect kernel for discriminating Sp and Sq . To
measure the level of difficulty in learning k̂p,q we compute
the kernel-target alignment [6] between k̂p,q and ktarp,q :

A(k̂p,q, ktarp,q ) =
〈K̂p,q,Ktar

p,q 〉F√
〈K̂p,q, K̂p,q〉F 〈Ktar

p,q ,Ktar
p,q 〉F

. (13)

Symbols K̂p,q and Ktar
p,q respectively indicate the kernel

matrix of the optimised kernel and the target kernel, and
〈·, ·〉F refers to the matrix dot product [6]. Note that Ktar

p,q

is perfectly block diagonal and can be computed as

Ktar
p,q = yTy (14)

where y = [y1 . . . yN ]. Eq. (13) then reduces to

A(k̂p,q, ktarp,q ) =
〈K̂p,q,yTy〉F

N
√
〈K̂p,q, K̂p,q〉F

. (15)

Note that 0 ≤ A(k̂p,q, ktarp,q ) ≤ 1 and the alignment ap-
proaches 1 if the two kernel matrices are exactly the same.

Figs. 3(b) and 3(d) illustrate K̂p,q and Ktar
p,q for clusters

3 vs 5 and clusters 4 vs 5 respectively. The alignment value

is significantly higher for clusters 4 and 5, indicating that
they correspond to different structures.

We propose a model selection algorithm based on greedy
structure merging. Given a set of clusters {Sp}p=1...P we
compute the alignment between all unique pairs of clusters.
The algorithm then chooses the pair with the lowest align-
ment to merge, and the process repeats on the remaining
P − 1 clusters. Each configuration of clusters represents
a model that explains the data, and the average pair-wise
kernel-target alignment for a model is used as a basis for
comparing models. The maximum average kernel-target
alignment is achieved when all the clusters in a particular
model are sufficiently distinguished from each other accord-
ing to the proposed measure in Eq. (15). This model selec-
tion criterion implicitly compares the goodness of fit and
complexity of proposal models. Algorithm 1 summarises
the proposed model selection scheme.

Algorithm 1 Model selection based on kernel optimisation
Require: Set of clusters {Sp}p=1...P .

for i = 1, . . . , (P − 1) do
Mi ←− Current set of clusters.
Compute all pairwise kernel-target alignment.
Āi ←− Average kernel-target alignment.
Merge cluster pair with the lowest alignment.

end for
return Mi∗ where i∗ = arg maxi Āi.

Note that Algorithm 1 is unable to return a model with
one structure since computing the proposed kernel-target
alignment requires at least a pair of clusters. For data
where the maximum average alignment occurs at two struc-
tures, we impose a threshold where the remaining structures
are merged if their alignment value does not surpass the
threshold. Since the kernel-target alignment is normalised
(0 ≤ A ≤ 1) a consistent threshold can be easily deter-
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mined. Moreover this only affects selection between mod-
els of 1 or 2 structures which is acceptable to many vision
applications (e.g. in motion segmentation there are usually
at least 2 motions, one from the moving object and one from
the background). Finally an inverse algorithm can be con-
structed by using the disparity between the optimised and
target kernel as the model selection criterion:

D(k̂p,q, ktarp,q ) =
1
N2
‖K̂p,q −Ktar

p,q ‖F . (16)

Fig. 1(c) illustrates applying the proposed model selection
algorithm to estimate the number of motions for the “three-
cars” sequence. It can be seen that the maximum (min-
imum) average kernel-target alignment (disparity) is cor-
rectly achieved when 3 motions remain.

4. Results
We test the proposed model selection approach on syn-

thetic and real data and compare it to previous techniques.
We use the MKL implementation of [1]1 for Algorithm 1.

How many lines? We first test the proposed approach on
synthetic data. Points in 2D are generated within [ 0 1 0 1 ]
which form lines in a specific configuration. Each line con-
tains 50 points which are distributed normally with vari-
ance σ2 around the line. A number of Q outliers which do
not correspond to any lines are also randomly added. Five
types of patterns are used in this experiment as illustrated in
Fig. 4. The task is to apply model selection to estimate the
number of lines present in the data.
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Figure 4. Five patterns of lines with 1 to 5 lines per data set.

Given a set of data we preprocess it by the outlier re-
moval scheme proposed in [4]. Our technique is then ap-
plied to estimate the number of lines existing in the data.
We first oversegment the data using ORK by sampling
M = 5000 putative hypotheses, where each hypothesis is a
line estimated from a randomly selected pair of points. In-
tersection kernels with window size h = 100, 200, . . . 5000
are used as the base kernels for MKL. Parameter h is incre-
mented by 100 (instead of using all possible window sizes
within 1 ≤ h ≤ 5000) to reduce the learning time of MKL.
Fig. 5 illustrates a typical result of the proposed approach.

We examine the performance of the approach under var-
ious outlier rates (i.e. Q = 100, 125, . . . , 300) and inlier
scales (i.e. σ = 0.0025, 0.005, . . . , 0.015). When vary-
ing Q we fix σ at 0.01 while Q is maintained at 200 when
varying σ. For each setting of σ and Q we generate 100

1Available at http://www.di.ens.fr/˜fbach/path/.

instances of each configuration in Fig. 4. We then apply the
proposed approach on each data instance. By stochastically
generating increasingly difficult data we examine the stabil-
ity of the proposed approach under different conditions. For
each σ and Q we obtain the accuracy (over all instances of
the 5 patterns) of the proposed approach in model selection.

We compare our model selection criterion to Geometric
AIC [12], Geometric MDL [12] and GRIC [20]. These can
be summarised in the following form

Criterion(M) = κ1J(M) + κ2K(M), (17)

whereM indicates a particular model (i.e. a specific num-
ber of structures and their fit onto the data), J(M) is the
fitting error of M and K(M) is the complexity measure
of M (refer to [12, 20] for their specific algebraic form).
Positive constants κ1 and κ2 encode the relative importance
of J(M) and K(M) and we tune these to the best of our
efforts for the experiments. We adapt Algorithm 1 to these
criteria by evaluating Āi ←− Criterion(M) and choosing
clusters to merge by exhaustive search, i.e. find the pair that
causes the largest decrease in Criterion(M) after merg-
ing. Finally we also compare our approach to the sequential
structure-removal model selection scheme of [4].
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(a) Accuracy under different number of outliers.
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(b) Accuracy under varying inlier scale.

Figure 6. Comparing accuracy in estimating the number of lines.

Fig. 6 displays the obtained results. Since our outcomes
show that all 3 criteria from [12, 20] perform similarly (with
GRIC being slightly better) only GRIC is shown in Fig. 6.
It can be seen that all methods perform consistently across
different outlier rates, while the accuracies decrease with an
increase in σ (which causes lines to be less well-defined).
The sequential structure-removal approach [4] is the weak-
est method with the lowest average accuracy. Our method
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(a) Initial clustering reveals 11 structures.
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(b) Max. alignment achieved at 5 structures.
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(c) Results after refining model fits.

Figure 5. Applying MKL-based model selection for 2D line fitting (best viewed in color). The original data is shown in Fig. 4. Outliers are
first removed using the method in [4]. The remaining points are oversegmented using ORK resulting in (a) (note that the colours repeat).
After the optimal model is obtained using Algorithm 1, a line is fitted onto each cluster in the model via least squares, yielding (c).

is on average more accurate that GRIC in Fig. 6(a), while in
Fig. 6(b) our method substantially outperforms GRIC when
σ is lower but is matched by GRIC as σ increases. Note
that as σ increases the outlier removal scheme of [4] de-
teriorates (e.g. incorrectly removing inliers and retaining
outliers) thus impacting all compared methods negatively.

How many motions? Our second experiment relates to
model selection in motion segmentation under the affine
camera model. We first run the proposed approach on
sequences from the Hopkins 155 benchmark dataset [21]
to estimate the number of motions. This dataset contains
155 sequences with tracked feature points. In terms of vi-
sual content the dataset can be divided into 3 categories:
checkerboard sequences (104), traffic sequences (38) and
articulated/non-rigid motions (13). Only 2- and 3-motion
sequences are available in the dataset, where 120 sequences
contain 2 motions. An example sequence is shown in Fig. 1.

We compare the proposed approach to the rank detec-
tion method of [12] (which is based on Geometric AIC) and
the clustering-based method of [3]. We also adapt Algo-
rithm 1 to using GRIC [20] as the model selection and struc-
ture merging criterion. Table 1 summarises the obtained re-
sults. It can be seen that the proposed method with MKL
as the criterion is the most accurate for 2-motion sequences
(99 correct), while Algorithm 1 adapted to using GRIC is
the most successful for 3-motion sequences (23 correct). In
terms of overall accuracy the proposed method with MKL
is higher than the other methods.

# correct # correct % correct
2 motions 3 motions overall

Method 120 seqs. 35 seqs. 155 seqs.
Rank detect. [12] 97 5 65.80
Clustering [3] 80 17 62.58
Algorithm 1 99 17 74.84
Algo. 1 + GRIC 88 23 71.61

Table 1. Model selection performance on the Hopkins 155 dataset.

Testing on sequences with 2 or 3 motions only does not

reveal the generalisation capability of the model selection
approach to sequences with more than 3 motions. To solve
this problem we concatenate motion trajectories to produce
sequences with more than 3 motions. A trajectory matrix
with n tracked feature points across F frames is defined as

T =

 x11 . . . xn1

...
. . .

...
x1F . . . xnF

 ∈ R2F×n, (18)

where each xif = [ xif yif ]T is the coordinate of the i-th
feature point in f -th frame. Given two trajectory matrices
T1 ∈ R2F1×n1 and T2 ∈ R2F2×n2 we combine them to
create a new trajectory matrix T3 as follows:

T3 = [ T′1 T′2 ] ∈ R2F3×n3 (19)

where F3 = min(F1, F2) and n3 = n1 + n2. If Fj = F3

then T′j = Tj , else T′j is taken as rows 1 to 2F3 of T′j .
Further, we add to the xif ’s in T′2 the width of the video
frame of the sequence corresponding to T1.

We combine sequences from the Hopkins 155 dataset in
the manner of Eq. (19) to create new sequences with 4 and
5 motions. Fig. 7 illustrates the new sequences and results
from applying Algorithm 1. It can be seen that the max-
imum (minimum) alignment (disparity) is achieved at the
correct number of motions. Table 2 depicts the results for
all the compared approaches. Only the proposed approach
with MKL as the model selection criterion correctly esti-
mated the number of motions for all the sequences in Fig. 7.

No. of estimated motions
Method 7(a) 7(c) 7(e) 7(g)
Rank detect. [12] 2 2 3 3
Clustering [3] 4 4 6 5
Algorithm 1 4 4 5 5
Algo. 1 + GRIC 5 4 5 6

Table 2. Number of estimated motions for sequences in Fig. 7.
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(b) Algorithm 1 results on (a)
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(d) Algorithm 1 results on (c)
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(e) 1RT2TCRT A g12 + 2R3RTCRT g12
+ 2RT3RCR g12 (motion 1 only)
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(f) Algorithm 1 results on (e)
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(g) 1R2TCRT g12 + 1RT2RCRT g12 +
2R3RTCRT g12 (motion 1 only)
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(h) Algorithm 1 results on (g)

Figure 7. Model selection on sequences with 4 and 5 motions (best viewed in color). (a), (c), (e) and (g) show the trajectory of (actual)
tracked points in the combined sequences, where each color corresponds to a unique motion, and the captions indicate the original sequences
from Hopkins 155 which make up the combined sequences. Ground truth: (a) and (c) 4 motions, (e) and (g) 5 motions.

5. Conclusions
In this paper we propose a novel approach for model se-

lection based on kernel optimisation. Our method first over-
segments the input data to arrive at an initial set of struc-
tures. We then carry out a series of kernel optimisation to
determine if each pair of structures should be merged. The
algorithm then iteratively merges pairs of structures, and
the model selection criterion is simply the average kernel-
target alignment of a particular model. Experiments show
that the proposed approach is highly accurate in determin-
ing the number of instances of a generic model in the in-
put data. We also demonstrate its successful application on
model selection for affine camera multi-body motion seg-
mentation. Future work will be directed towards improving
the efficiency of MKL in our model selection approach.
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